Pavlina Naskova, Maria Konsulova, Dragomir Plamenov, Boyka Malcheva


The publication presents results from a study of the total microflora in urogenic soils in Sofia. The influence of four major factors on the total microflora size is analyzed: depth of sampling, humidity and soil temperature, content of lead. A regression and correlation analysis was carried out, whereby the statistical significance of the coefficients in the mathematical model was checked in the case of a one-factor model and a model with all the factors. The behavior of the model has been investigated in a variety of data samples and an optimal option has been selected.


mathematical model, general microflora, urbogenic soil, lead, regression analysis, correlation analysis

Full Text:



Ventsely, E.S., 1969. Teoriya Veroyatnostey, Izdatelystvo „NAUKA“, Moskva.

Zvigyantsev. D.G. 1994. Teoreticheskie osnovm zkologicheskoy otsenki mikrobnuh resursov pochv Pochvovedenie. № 4. - S. 65-73.

Kostadinova., K. 2009. Izpolzvane na MS Excel v obuchenieto po statistika, Nauchni trudove na Rusenskiya universitet . Tom 48, seriya 6.1

Marchik, T., S. Golovatysh. 2012. Chislennosty, biomassa i zkologo- troficheskaya struktura mikrobnbayh tsenozov dernovo-karbonatnbayh pochv, Garadzenskі dzyarzhaўnay ўnіversaytet іmya Yankі Kupalay. 107-118.

Shilev, S. 2006. Mikrobialna aktivnost v pochvi zamarseni s tezhki metali. Sbornik s dokladi na „4ta natsionalna mladezhka nauchno-prakticheska sesiya“, 19-21 may 2006 g., Sofiya, s. 194-199.

Agnelli A, Ascher J, Corti G, Ceccherini MT, Nannipieri P & Pietramellara G., 2004, Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration and DGGE of total and extracellular DNA. Soil Biol Biochem 36: 859-868.

Blagodatsky, S. A. and Richter, O. 1998. Microbial growth in soil and nitrogen turnover: A theoretical model considering the activity state of microorganisms, Soil Biol. Biochem., 30, 1743–1755.

Blume E., Bischoff M, Konopka A, Moormann T, Reichert JM & Turco RF, 2002, Surface and subsurface microbial biomass, community structure and metabolic activity as a function of soil depth and season. Appl Soil Ecol 20: 171-181;

Braun B, Böckelmann U, Grohmann E & Szewzyk U (2006) Polyphasic characterization of the bacterial community in an urban soil profile with in situ and culture dependent methods. Appl Soil Ecol 31: 267-279.

Bundt M, Blaser P, Pesaro M, Widmer F & Zeyer J, 2001, Preferential flow paths: biological 'hot spots' in soils. Soil Biol Biochem 33: 729-738;

Darrah, P. R. 1991. Models of the Rhizosphere .1. Microbial-Population Dynamics around a Root Releasing Soluble and Insoluble Carbon, Plant Soil, 133, 187–199.

Ekelund F, Rønn R & Christensen S., 2004, Distribution with depth of protozoa, bacteria and fungi in soil profiles from three Danish forest sites. Soil Biol Biochem 33: 475 481.

Fritze H, Pennanen T & Pietikainen J, 2000, Distribution of microbial biomass and phospholipid fatty acids in Podzol profiles under coniferous forest. Eur J Soil Sci 51: 565 573.

Garcia-Pichel F, Belnap J, Johnson SL & Youngkin D, 2003, Small-scale vertical distribution of bacterial biomass and diversity in biological soil crusts from arid lands in the Colorado plateau. Microb Ecol 46: 312-321.

Garnier, P., Neel, C., Mary, B., and Lafolie, F. 2001. Evaluation of a nitrogen transport and transformation model in a bare soil, Eur. J. Soil. Sci., 52, 253–268, 2001.

Grant, R. F., Juma, N. G., and McGill, W. B.1993. Simulation of Carbon and Nitrogen Transformations in Soil – Mineralization, Soil Biol. Biochem., 25, 1317–1329.

Ingwersen, J., Poll, C., Streck, T., and Kandeler, E. 2008. Micro-scale modelling of carbon turnover driven by microbial succession at a biogeochemical interface, Soil Biol. Biochem., 40, 864–878.

Knapp, E. B., Elliott, L. F., and Campbell, G. S. 1983. Carbon, Nitrogen and Microbial Biomass Interrelationships during the Decomposition of Wheat Straw – a Mechanistic Simulation-Model, Soil Biol. Biochem., 15, 455–461.

Kravchenko, L. V., Strigul, N. S., and Shvytov, I. A. 2004. Mathematical simulation of the dynamics of interacting populations of rhizosphere microorganisms, Microbiology+, 73, 189–195.

Kuijper, L. D. J., Berg, M. P., Morrien, E., Kooi, B.W., and Verhoef, H. A. 2005. Global change effects on a mechanistic decomposer food web model, Global Change Biol., 11, 249- 265.

Leffelaar, P. A. and Wessel, W. W. 1988. Denitrification in a Homogeneous, Closed System Experiment and Simulation, Soil Sci., 146, 335–349.

Maggi, F. and Porporato, A. 2007. Coupled moisture and microbial dynamics in unsaturated soils, Water Resour. Res., 43, W07444, doi:10.1029/2006WR005367.

Parton, W. J., Stewart, J. W. B., and Cole, C. V.1988. Dynamics of C, N, P and S in Grassland Soils – a Model, Biogeochemistry, 5, 109–131.

Stapleton, L. M., Crout, N. M. J., Sawstrom, C., Marshall, W. A.,Poulton, P. R., Tye, A. M., and Laybourn-Parry, J. 2005. Microbial carbon dynamics in nitrogen amended Arctic tundra soil: Measurement andmodel testing, Soil Biol. Biochem., 37, 2088–2098.

Toal, M. E., Yeomans, C., Killham, K., and Meharg, A. A. 2000. A review of rhizosphere carbon flow modelling, Plant Soil, 222, 263–281.

Vandewerf, H. and Verstraete,W. 1987. Estimation of Active Soil Microbial Biomass by Mathematical-Analysis of Respiration Curves –Development and Verification of the Model, Soil Biol. Biochem., 19, 253–260.

Velcheva, I., P. Kostadinova. 2001. Invertebrates in Soil Polluted with Heavy Metals. Journal of Balkan Ecology, 4: 57-63;

Velcheva, I, P. Kostadinova ,V. Popov. 2001b. The Heavy Metals impact on Soil Mezobiota, Journal of Environmental Protection and Ecology, 2: 637-641.

Velcheva, I., K.Sapundjieva, P. Kostadinova. 2001a. Ecomonitoring Study of the Condition of Soil Cenoses from Heavy Metals Contaminated Grounds. Bulgarian Journal of Agricultural Science, 7: 319-324.

Wieder, W. R., Bonan, G. B., and Allison, S. D. 2013. Global soil carbon projections are improved by modelling microbial processes, Nat. Clim. Change, 3, 909-912.

Zelenev, V. V., van Bruggen, A. H. C., and Semenov, A. M. 2000. “BACWAVE”, a spatial–temporal model for traveling waves of bacterial populations in response to a moving carbon source in soil, Microbial Ecol., 40, 260–272.


  • There are currently no refbacks.

New knowledge Journal of science is financed by the National Science Fund of the Republic of Bulgaria - contract № КП-06-НП1/5 of 17.12.2019 in the competition of Bulgarian scientific periodicals – 2019

New knowledge Journal of science is financed by the National Science Fund of the Republic of Bulgaria – contract № ДНП 05/52 от 22.12.2016 in the competition of Bulgarian scientific periodicals – 2016

The contents of this publication do not necessarily reflect the position or opinion of the National Science Fund of the Republic of Bulgaria. The opinions expressed are those of the author(s) only and should not be considered as representative of the National Science Fund’s official position.

National Science Fund of Bulgaria